盘古NLP大模型可用于内容生成、内容理解等方面,并首次使用Encoder-Decoder架构,兼顾NLP大模型的理解能力和生成能力,保证了模型在不同系统中的嵌入灵活性。在下游应用中,仅需少量样本和可学习参数即可完成千亿规模大模型的快速微调和下游适配。2019年中文语言理解评测基准CLUE榜单中,盘古NLP大模型在总排行榜及分类、阅读理解单项均排名第一,刷新三项榜单世界历史纪录;总排行榜得分83.046,多项子任务得分业界领先,是最接近人类理解水平(85.61)的预训练模型。 [1]